Comonomer sequence distribution in ethylene/1-hexene copolymers

H. N. Cheng

Hercules Research Center, Hercules Incorporated, c/o 1313 N. Market Street, Wilmington, DE 19894-0001, USA

SUMMARY

The 13 C NMR spectral assignments for ethylene/1-hexene copolymers are reexamined. Revised assignments are obtained for the 34-36 ppm region. A computational scheme is devised to extract information on composition and sequence distribution from the spectral intensities. A computerized analytical approach that fits the observed intensities to statistical models is also available.

INTRODUCTION

Ethylene/1-hexene (EH) copolymers have attracted increasing attention because of their use in linear low density polyethylene. The microstructure of this copolymer has been previously studied by ¹³C NMR.¹⁻² Florin-Michel, et al.¹ made the first attempt to assign the ¹³C NMR spectra of EH copolymers. Hsieh and Randall² subsequently gave revised assignments and also provided a computational framework for the determination of comonomer sequence distribution. Recently, Soga, et al.,³ and De Pooter, et al.⁴ reported the ¹³C NMR data of a number of these copolymers.

In this work, the NMR assignments of EH copolymers are reexamined, and improvements in the assignments obtained. A computerized analytical methodology is also developed to obtain accurate comonomer sequence distribution.

EXPERIMENTAL SECTION

The EH copolymers studied here are experimental samples made with heterogeneous Ziegler-Natta stereoregular-type catalysts. The samples were dissolved in 1,2,4-trichlorobenzene at a concentration of 20 wt % with d_6 -benzene added as the lock material. The ¹³C NMR spectra were obtained on a Nicolet NT 360 spectrometer operating at 90.54 MHz and 110°C. Instrumental conditions used were: pulse angle, 60°; delay between acquisition, 4.7 s; sweep width, 6000 Hz; 8K memory size, zero-filled to 16K; continuous ¹H decoupling and quadrature detection. Spectral intensities were obtained by electronic integration of the appropriate resonances.

Computation was carried out on a PS/2 Model 486. The program FITCO.EHCO was written in QuickBASIC, and can be readily operated in BASICA.

RESULTS AND DISCUSSION

A typical ¹³C NMR spectrum of the EH copolymer is given in Figure 1. The resonances have been numbered 1-24 according to the numbering scheme of Hsieh and Randall.² The following nomenclature, based on the idea of Carman,⁵ will be used:

In the above example, S and T indicate secondary and tertiary backbone carbons, and C_i corresponds to the ith carbon from the branch chain end. The Greek subscripts provide a measure of the distance of neighboring butyl branches.

<u>Spectral Assignments</u>. The revised ¹³C NMR spectral assignments of EH copolymers are obtained by several means: (1) empirical additive ¹³C shift rules, ⁶⁻⁹ (2) comparison with the assignments of ethylene/propylene, ¹⁰⁻¹² ethylene/1-butene, ¹³⁻¹⁵ and ethylene/1-octene copolymers, ¹⁶⁻¹⁷ (3) consideration of the intensities of different resonances in EH copolymers with different composition. The revised assignments are summarized in Table 1.

Improvements in the assignments are found in the 34.0-35.5 ppm region. In this region (lines 6-10), three types of carbons overlap: C_4 , $S_{\alpha\gamma}$ and $S_{\alpha\delta}$. The earlier assignments in this region are somewhat sketchy (Table 2). In this work, six resonances can be distinguished (including line 8a). By analogy to ethylene/propylene^{5,10-12} and ethylene/1-butene¹³⁻¹⁵ copolymers, $S_{\alpha\gamma}$ and $S_{\alpha\delta}$ are assigned to four resonances. Intensity considerations indicate that the C_4 carbon is split by comonomer sequence effect into pentads (Table 2).

Although the C_4 assignments shown in Table 2 appear complicated at first blush, it may be recalled that the first carbon on the short-chain branching in ethylene/propylene¹⁰⁻¹² and ethylene/1-butene¹⁵ copolymers are also sensitive to comonomer sequence placement at the pentad level in the ¹³C NMR spectra. Thus, this result for EH copolymers is not unexpected.

Line	Shift	Sequence	Markovian Probability (F _i)ª
1 2 3	41.6 41.0 40.1	S _{aa} HHHH S _{aa} HHHE S _{aa} EHHE	$\begin{array}{c} P_{\rm hh}{}^2 P_{\rm eh} \\ 2 P_{\rm hh}{}^2 P_{\rm eh} P_{\rm he} \\ P_{\rm hh} P_{\rm eh} P_{\rm he}{}^2 \end{array}$
4 5	38.1 35.7	$T_{_{88}}$ EHE $T_{_{\beta8}}$ HHE	${P_{he}}^2 P_{eh} onumber {2P_{he}} P_{hh} P_{eh}$
6	35.4	$S_{\alpha\gamma}$ HHEH	$2P_{he}P_{eb}^{2}P_{hh}$
7+8+8a	35.1 34.9	B₄ HHHHHH S _{ay} EHEH B₄ HHHHE S _{as} HHEE	$\begin{array}{c} P_{hh}^{4} P_{eh} \\ 2P_{he} P_{eh}^{2} P_{hh} \\ 2P_{hh}^{3} P_{he} P_{eh} \\ 2P_{hh} P_{eh} P_{eh} \\ 2P_{he} P_{eh} P_{he} P_{eh} \end{array}$
	34.8	B ₄ ⁶⁶ EHHHE	$P_{he}^2 P_{bh}^2 P_{eh}$
9	34.5		$2{P_{he}}^2 {P_{ee}} {P_{eh}} 2{P_{hh}}^2 {P_{he}} {P_{eh}} 2{P_{hh}}^2 {P_{he}} {P_{eh}} 2{P_{he}}^2 {P_{hh}} {P_{eh}}$
10 11 12 13 14	34.0 33.5 31.0 30.5 30.0	$\begin{array}{lll} B_4 & EHE \\ T_{\beta\beta} & HHH \\ S_{\gamma\gamma} & HEEH \\ S_{\gamma\delta} & HEEEH \\ S_{\delta\delta} & HE_{n>3}H \end{array}$	$\begin{array}{c} P_{he}^{2} P_{eh} \\ P_{hh}^{2} P_{eh} \\ P_{he} P_{ee} P_{eh}^{2} \\ 2P_{he} P_{eh} P_{ee}^{2} \\ 2P_{he} P_{eh} P_{ee}^{2} - P_{he} P_{eh} P_{ee}^{2} \end{array}$
15+16+17	29.2-29.5	B ₃ H	P _{eh}
18+19	27.1-27.3	$S_{\beta\delta}$ XHEE	$2P_{he} P_{eh} P_{ee}$
20+21+22	24.2-24.4	$S_{\beta\beta}$ HEH	$P_{he} P_{eh}^2$
23	23.4	B ₂ H	P_{eh}
24	14.1	B ₁ H	\mathbf{P}_{eh}
	Sum	2E + 6H	$2P_{he} + 6P_{eh}$

 Table 1.
 ¹³C NMR Assignments and First-Order Markovian Probabilities of Ethylene/1-Hexene Copolymers

^a For Bernoullian probabilities, set $P_{hh} = P_{eh} = P_{h}$, and $P_{he} = P_{ee} = P_{e}$, where P_{h} and P_{e} are the probabilities of 1-hexene and ethylene, respectively. For two-component (B/B) probabilities, set $F_{total} = w_1F_1 + w_2F_2$ where w_i and F_i are the weight fraction and the Bernoullian expression for component i.

Previous scheme ²			This work				
Line	Shift	Assignment	Line	Shift	Assignme	\mathbf{nt}	
6	35.37	C ₄ HHH	6	35.36	$S_{\alpha\gamma}$ HHEH		
7	35.00	$S_{\alpha\gamma}$ HHEH $S_{\alpha\gamma}$ EHEH	7	35.09	$S_{\alpha\gamma}$ EHEH	C_4	ннннн
8	34.90	$S_{\alpha\delta}^{\alpha}$ HHEE	8	34,91	S _{ab} HHEE	C_4	HHHHE
	J	C ₄ HHE	8a	34.76		C ₄	EHHHE
9	34.54	$S_{\alpha\delta}$ EHEE	9	34.45	$S_{\alpha\delta}$ EHEE	$C_4 C_4$	HHHEX EHHEX
10	34.13	C ₄ EHE	10	34.03		C4	EHE

Table 2. Comparison of two assignment schemes for lines 6-10

<u>Computational Scheme</u>. Hsieh and Randall² have previously divided the EH copolymer spectrum into eight regions. They showed how the copolymer composition, diad, and triad sequences can be calculated from the combined intensities of the eight regions. An alternative computational approach is proposed here. For convenience, the designations, S_{ij} and T_{ij} , refer to the intensities of the S_{ij} and T_{ij} sequences in this section.

Using the assignments shown in Table 1 and drawing analogy to ethylene/propylene copolymers, one can obtain the following expressions for copolymer composition:

$$\begin{split} \mathbf{E}' &= 1/2 \ [\mathbf{S}_{\gamma\gamma} + \mathbf{S}_{\gamma\delta} + \mathbf{S}_{\delta\delta} + \mathbf{S}_{\beta\beta} + \mathbf{S}_{\beta\delta} + 1/2(\mathbf{S}_{\alpha\gamma} + \mathbf{S}_{\alpha\delta})], \\ \mathbf{H}' &= \mathbf{S}_{\alpha\alpha} + 1/2 \ (\mathbf{S}_{\alpha\gamma} + \mathbf{S}_{\alpha\delta}). \end{split}$$

Since $S_{\alpha\gamma}$ and $S_{\alpha\delta}$ overlap with C_4 , precise determination is difficult. These equivalence relationships are used: $S_{\alpha\delta} \approx S_{\beta\delta}$, $S_{\alpha\gamma} = 2 S_{\beta\beta}$. Thus,

$$\begin{array}{l} \mathbf{E}'= \ 1/2 \ [\mathbf{S}_{\gamma\gamma} + \mathbf{S}_{\gamma\delta} + \mathbf{S}_{\delta\delta} + 2 \ \mathbf{S}_{\beta\beta} + 3/2 \ \mathbf{S}_{\beta\delta}] \\ \mathbf{H}'= \ \mathbf{S}_{\alpha\alpha} + \ \mathbf{S}_{\beta\beta} + 1/2 \ \mathbf{S}_{\beta\delta} \end{array}$$

Several other measures of 1-hexene are possible; these serve as double checks on the value of H'.

$$\begin{array}{l} H'' &= T_{\beta\beta} + T_{\beta\delta} + T_{\delta\delta} \\ H''' \approx C_1 \approx C_2 \approx C_3 \end{array}$$

The copolymer composition is obtained by normalizing E' and H'. Let $\mathbf{k} = (E' + H')^{1}$, then $(E) = \mathbf{k}E'$, and $(H) = \mathbf{k}H'$.

Information on comonomer diad and triads can be readily derived. For compactness, the expressions are summarized in Table 3.

Sequence	Expression ^a	Spectral Intensities ^a
(H) (E)	$\begin{array}{l} k(S_{\alpha\alpha}+S_{\beta\beta}+1/2~S_{\beta\delta})\\ k/2~(S_{\gamma\gamma}+S_{\gamma\delta}+S_{\delta\delta}\\ +~2S_{\beta\beta}+3/2~S_{\beta\delta}) \end{array}$	$\begin{array}{l} k(I_{1\cdot3} + I_{20\cdot22} + 1/2 \ I_{18\cdot19}) \\ k/2(I_{12\cdot14} + 2I_{20\cdot22} + 3/2 \ I_{18\cdot19}) \end{array}$
(HH) (HE) (EE)	$\begin{array}{l} \mathbf{k} \mathbf{S}_{\alpha\alpha} \\ \mathbf{k}(\mathbf{S}_{\beta\delta} + 2\mathbf{S}_{\beta\beta}) \\ \mathbf{k}/2(\mathbf{S}_{\gamma\gamma} + \mathbf{S}_{\gamma\delta} + \mathbf{S}_{\delta\delta} \\ &+ 1/2 \mathbf{S}_{\beta\delta}) \end{array}$	$\begin{array}{l} k(I_{1.3}) \\ k(I_{18-19} + 2 \ I_{20.22}) \\ k/2(I_{12-14} + 1/2 \ I_{18-19}) \end{array}$
(HHH) (HHE) (EHE) (HEH) (HEE) (EEE)	$\begin{array}{ll} (H). \ T_{\beta\beta}/(T_{\beta\beta} + \ T_{\beta\delta} + \ T_{\delta\delta}) \\ (H). \ T_{\beta\beta}/(T_{\beta\beta} + \ T_{\beta\delta} + \ T_{\delta\delta}) \\ (H). \ T_{\delta\delta}/(T_{\beta\beta} + \ T_{\beta\delta} + \ T_{\delta\delta}) \\ k \ S_{\beta\beta} \\ k \ S_{\beta\delta} \\ k/2 \ S_{\delta\delta} + k/4 \ S_{\gamma\delta} \end{array}$	(H). $I_{11}/(I_4 + I_5 + I_{11})$ (H). $I_5/(I_4 + I_5 + I_{11})$ (H). $I_4/(I_4 + I_5 + I_{11})$ k I_{20-22} k I_{18-19} k/2 $I_{14} + k/4 I_{13}$

Table 3. Computational Scheme for the Comonomer Sequence Distribution

* \mathbf{k} = normalization constant = $[(H) + (E)]^{-1}$

This computational scheme has been applied to the NMR data of two samples of EH copolymers. The experimentally observed intensities are given in Table 4 under I_{obsd} . The composition and the sequence distributions (as calculated by the expressions given in Table 3) are shown below:

	Sample 1	Sample 2
н	14.9	17.8
E	85.1	82.2
HH	0.8	3.5
HE	28.3	28.5
EE	70.9	67.9
HHH	0.4	1.9
HHE	0.8	2.9
EHE	13.7	13.0
HEH	1.9	1.9
EEH	24.5	24.8
EEE	60.2	55.1

<u>Reaction Probability model</u>. The intensities of the ¹³C NMR spectrum can be analyzed through the computerized analytical approach.¹⁸⁻²² In this approach, a suitable statistical model pertinent to the copolymer is chosen and the theoretical intensities corresponding to each resolvable resonance calculated. The observed intensities are then compared with the theoretical intensities through the simplex algorithm in order to derive the optimal reaction probabilities.

		Sample 1		Sample 2					
<u>Line</u>	<u>Shift</u>	Lobsd I	calc(M1)	$I_{calc}(M1/M1)$	Lobsd	$\underline{I}_{colc}(\underline{M1})$	$\underline{I_{calc}}(\underline{M1/M1})$		
1	41.6	0.1	0.0	0.0	0.5	0.0	0.0		
2	41.0	0.1	0.0	0.1	0.2	0.1	0.2		
3	40.1	0.1	0.1	0.1	0.6	0.5	0.5		
4	38.1	4.4	5.3	5.2	4.8	5.3	5.3		
5	35.7	0.3	0.2	0.2	1.0	1.2	1.1		
6	35.4	0.1	0.0	0.1	0.4	0.2	0.3		
7+8+8a	~ 34.9	1.8	1.8	1.9	3.1	3.1	3.1		
9	34,5	9.5	9.0	9.0	10.7	9.7	9.7		
10	34.0	6.7	5.3	5.2	6.3	5.3	5.3		
11	33.5	0.1	0.0	0.1	0.7	0.1	0.1		
12	31.0	0.5	0.7	0.7	0.8	0.9	0.9		
13	30.5	6.1	7.6	7.5	8.0	7.6	7.5		
14	30.0	43.8	43.8	43.8	35.7	35.7	35.7		
15+16+17	29.3	5.7	5.5	5.5	7.1	6.5	6.6		
18+19	27.2	9.5	9.0	8.9	8.9	9.5	9.4		
20+21+22	24.3	0.7	0.9	0.9	0.7	1.1	1.2		
23	23.4	5.4	5.5	5.5	5.3	6.5	6.6		
24	14.1	5.1	5.5	5.5	5.1	6.5	6.6		
Model-Fitting									
1-component (1	M1)	P_{he}	= 0.98	2	Phe	= 0.899			
		P_{eh}	= 0.15	9	Peh	= 0.194			
	Me	an Dev	. = 0.4	Mea	n Dev	. = 0.5			
2-component (M1/M1)		Comp. 1: $w_1 = 0.960$				Comp. 1: $w_1 = 0.964$			
		$P_{h_0} = 0.996$				$P_{\rm ho} = 0.917$			
				$P_{ch}^{ne} = 0.156$			$P_{ab} = 0.189$		
	Comp. 2: $\mathbf{w}_{2} = 0.040$				Comp. 2: $w_2 = 0.036$				
	$P_{he} = 0.629$				$P_{h_{a}} = 0.599$				
		$P_{ch} = 0.258$				$P_{\rm ob} = 0.494$			
	Mean Dev. $= 0.4$				Mean Dev. $= 0.5$				

Table 4. Computerized Analysis of EH Copolymers by One-Component and **Two-Component Markovian Models**

Two statistical models will be attempted: one-component first-order Markovian (M1) model¹⁸ and two-component Markovian/Markovian (M1/M1)²⁰⁻²² model. The corresponding Bernoullian (B) models can be readily derived. The theoretical expressions (F_i) for the first-order Markovian model is given in the last column in Table 1. For the two-component M1/M1 model the theoretical expression (F_{total}) consists of the weighted average of two M1 expressions: \mathbf{F}_{t}

$$_{\text{otal}} = \mathbf{W}_1 \mathbf{F}_1 + \mathbf{W}_2 \mathbf{F}_2$$

where w_i and F_i are the proportion and the theoretical expression for component i, respectively.

The reaction probability models have been applied to the same two sets of NMR data. The results are shown in Table 4. It appears that both data sets fit very well to one-component first-order Markovian models. The addition 0f 3-4% of a second component (the M1/M1 model) improves the fit very slightly. For unambiguous determination of one-component versus two-component models, polymer fractionation (combined with NMR)²¹⁻²³ or other approaches²⁴ may be needed.

<u>COMPUTER PROGRAM</u>. The computational scheme and the reaction probability model calculations have all been incorporated in a PC-based computer program called FITCO.EHCO. The logic and the structure of the program is similar to the FITCO and MIXCO programs reported earlier.¹⁸⁻²⁰ Interested readers may write to the author for a program listing.

REFERENCES

- B. Florin-Michel, M.-F. Llauro, R. Spitz, and Q. T. Pham, <u>Eur. Polym. J.</u>, <u>15</u>, 277 (1979).
- 2. E. T. Hsieh and J. C. Randall, Macromolecules, 15, 1402 (1982).
- 3 K. Soga, T. Uozumi, and J. R. Park, Macromol. Chem., 191, 100 (1990).
- 4. M. De Pooter, et al., J. Appl. Polym. Sci., 42, 399 (1991).
- 5. C. J. Carman, R. A. Harrington, and C. E. Wilkes, <u>Macromolecules</u>, <u>10</u>, 773 (1977).
- 6. D. M. Grant and E. G. Paul, J. Am. Chem. Soc., 86, 2984 (1964).
- 7. L. P. Lindeman and J. Q. Adams, Anal. Chem., 43, 1245 (1971).
- C. J. Carman, A. R. Tarpley, and J. H. Goldstein, <u>Macromolecules</u>, <u>6</u>, 719 (1973).
- 9. H. N. Cheng and M. A. Bennett, <u>Anal. Chim. Acta</u>, <u>242</u>, 43 (1991), and references cited therein.
- 10. G. J. Ray, P. E. Johnson, and J. R. Knox, Macromolecules, 10, 773 (1977).
- 11. J. C. Randall, Macromolecules, 11, 33 (1978).
- 12. H. N. Cheng, Anal. Chem., 54, 1828 (1982).
- 13. G. J. Ray, J. Spanswick, J. R. Knox, and C. Serres, <u>Macromolecules</u>, <u>14</u>, 1323 (1981).
- 14. E. T. Hsieh and J. C. Randall, Macromolecules, 15, 353 (1982).
- 15. H. N. Cheng, Macromolecules, submitted for publication.
- 16. H. N. Cheng, Polym. Comm., 25, 99 (1984).
- 17. K. Kimura, S. Yuasa, and Y. Maru, Polymer, 25, 441 (1984).
- 18. H. N. Cheng, J. Chem. Inf. Computer Sci., 17, 8 (1987).
- 19. H. N. Cheng, J. Appl. Polym. Sci.: Appl. Polym. Symp., 43, 129 (1989).
- 20. H. N. Cheng, J. Appl. Polym. Sci., 35, 1639 (1988).
- 21. H. N. Cheng, Am. Chem. Soc. Symp. Ser., 404, 174 (1989).
- 22. H. N. Cheng, Polym. Bull., 23, 589 (1990).
- 23. H. N. Cheng and M. Kakugo, Macromolecules, in press.
- 24. H. N. Cheng, manuscript in preparation.

Accepted March 4, 1991 K